2014

M

Fluglärm-Messbericht Gemeinde Haimhausen

Berichtsnummer 280.07.2014 Erstellt durch die Arbeitsgruppe Immissionsschutz der Flughafen München GmbH

Projektteam Kapazitäten und Umwelt

Manfred Wilhelm Bernhard Friemer 18.08.2014

	Inhaltsverzeichnis	Seite	2
1. 1.1 1.2	Situationsbeschreibung Aufgabenstellung Methodik der Fluglärmmessung	Seite	3
1.3	Standort	Seite	4
1.4	Flugspuraufzeichnungen Beispieltag Landung/Start	Seite	5
1.5	Sonderregelung Heavy Nachtflug	Seite	6
1.6	An- und Abflugrouten Messparameter und Kalibration der Messkette	Seite	7
2.	Zusammenfassung	Seite	8-9
2.1	Fazit	Seite	10
3.	Auswertungen der Messergebnisse	Seite	11
3.1	Einzelschallbetrachtung		
3.2	Pegelhäufigkeitsverteilung		
3.3	Pegelhäufigkeitsverteilung in LASmax sortiert nach Stunden	Seite	12-13
3.4	Fluglärmerkennungsrate	Seite	14
3.5	Äquivalenter Dauerschallpegel/Fluggeräusch	Seite	15-18
0.0	Dauerschallpegelbetrachtung LEQ Diagramm		
3.6	Dauerschallpegelbetrachtung Vergleich der Messstandorte	Seite	19
4.	Akustische Umgebungsbedingungen/Fremdgeräusch	Seite	20
4.1	Meteorologische Einflüsse		
4.2	Ausfallzeiten, Verfügbarkeit der Anlage	Seite	21
5.	Erläuterungen zum Messbericht	Seite	22-23
5.1	Betriebsrichtungsverteilungen [*]	Seite	
5.2	Lärmklassifizierungen von Flugzeugtypen(*)	Seite	
5.3	Fluglärmmessung und Beurteilung (*)	Seite	26-27
5.4	Erfassung und Auswertung der Fluglärmereignisse (*)	Seite	28
5.5	Messausrüstung [*]	Seite	29
5.6	Auswertung (*)	Seite	30-33
5.7	Verifizierungsmethode (*)	Seite	34
5.8	Gesetze und Regularien (*) Kolibrationagertifikat Colibrator und Bratakall der Kolibration	Seite	35-36
5.9	Kalibrationszertifikat Calibrator und Protokoll der Kalibration Tägliche Kalibrierergebnisse	Solto	27 20
	ragiiche Kalibrierergebriisse	Seite	37-38
5.10	Kalibrierzertifikat SA 140 Schallpegelmessgerät	Seite	39
5.11	Anlagen	Seite	40 und f

Die mit * gekennzeichneten Textpassagen werden im Anhang detailliert erläutert.

1 Situationsbeschreibung

1.1 Aufgabenstellung

Die Gemeinde Haimhausen hat am 26.11.2013 einen Antrag auf eine erneute [6] mobile Fluglärm-Messung gestellt. Zur Charakterisierung der derzeitigen Fluglärmsituation sollten Fluglärmereignisse am Unteren Bründlweg 3, vermessen werden. Der, von der Gemeinde Haimhausen vorgeschlagene Standort, wurde hinsichtlich der messtechnischen Voraussetzungen ausführlich analysiert und beurteilt.

Der letztendlich von der FMG geprüfte Standort entsprach den Vorgaben der DIN 45643 (Februar 2011) und nach Zustimmung des Antragstellers wurde das Fluglärmmesssystem dort positioniert und am 28.06.2014, 06:00 Uhr in Betrieb genommen.

1.2 Methodik der Fluglärmmessung

Eine Fluglärmmessstation besteht aus einer wetterfesten Mikrofoneinheit der Fa. GRAS, einem Schallpegelmessgerät der Firma Norsonic Typ 140, einem PC mit Windows Betriebssystem zur Sammlung der anfallenden Messdaten und einer UMTS-Übertragungseinheit.

Laut DIN 45643 werden von der Messstelle kontinuierlich 2 Werte erfasst:

der 1 Sekunden Leq
der 1 Sekunden Taktmaximalpegel LASmax mit der Zeitbewertung S (Slow)

Gemessen wird immer mit A-Frequenzbewertungskurve.

Es wird jede Sekunde ein Messwert aufgezeichnet.

Der ermittelte Pegelzeitverlauf und die individuell einstellbaren Fluglärmerkennungsparameter ermöglichen es, ein Fluglärmereignis als solches zu erkennen und garantieren damit die Erfassung fast aller Flugbewegungen.

Neben den Fluggeräuschen treten an den Messstellen auch eine Vielzahl von Fremdgeräuschen auf. Um die Fluggeräusche von anderen Geräuschen trennen zu können, kommen die Erkennungskriterien der DIN 45643 zur Anwendung: Der Schallpegel eines Fluglärmereignisses muss eine bestimmte Maximalpegelschwelle, deren Einstellung von der am Messort vorhandenen Fremdgeräuschsituation abhängig ist, für eine Mindestdauer überschreiten. Zu jedem erkannten Fluglärmereignis wird eine Audiodatei (MP3) erzeugt und archiviert.

Um eine klare Identifizierung von Fluglärm zu ermitteln, werden die Audiodateien jedes Lärmereignisses aus der Messstelle bei Bedarf abgehört.

Dieses Messverfahren und die weiteren Auswertungen der Daten werden durch die DIN 45643 [Messung und Beurteilung von Fluggeräuschen] geregelt.

1.3 Standort

Der Messcontainer wurde in der Gemeinde Haimhausen, am Unteren Bründlweg 3 positioniert.

Messgegenstand

Fluglärm

Messgerät

Messcontainer [MEC] Fluglärmmesssystem-FMG

Standort

Haimhausen

Messzeitraum

28.06.2014, 06:00 Uhr - 06.08.2014, 06:00 Uhr

Der akustische 24 h-Tag beginnt um 06:00 Uhr und endet um 06:00 Uhr des folgenden Kalendertages.

GPS-Koordinaten

Latitude (DMS)

48° 19

33

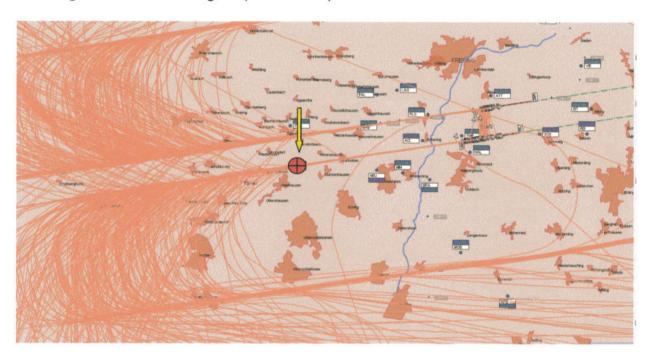
32

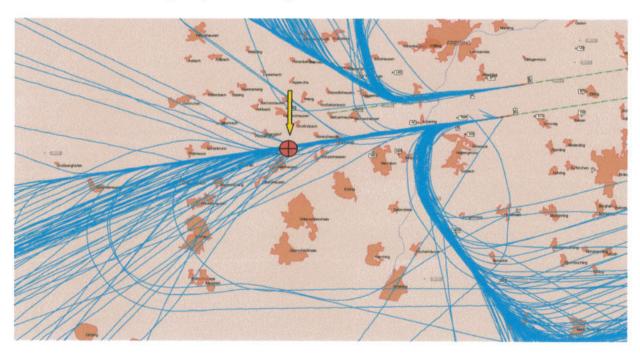
Longitude (DMS)

11°

31,8

Die GPS-Koordinaten wurden ermittelt und als Datensatz für die Messung im Fluglärmserver hinterlegt. Somit wird eine exakte Korrelation mit den Radardaten der Deutschen Flugsicherung ermöglicht.


= Standort der mobilen Messstelle in Haimhausen, am Unteren Bründlweg 3 Bildquelle Landesamt für Vermessung und Geoinformation

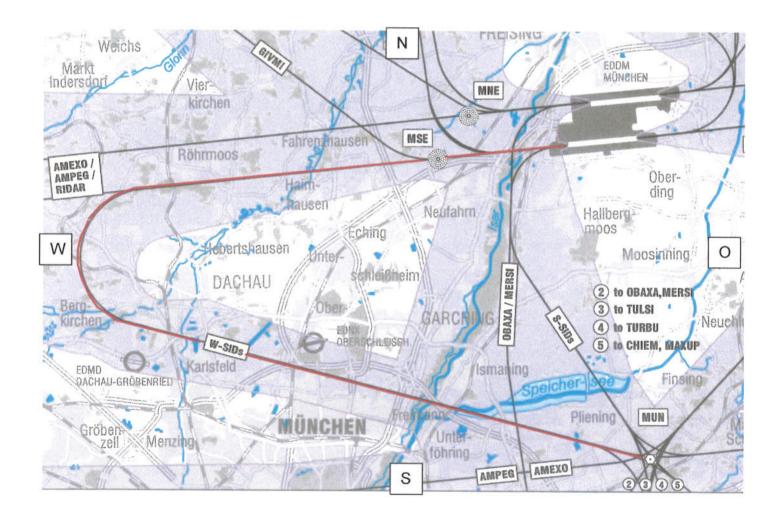

1.4 Flugspuraufzeichnungen

Damit eine präzise Einstellung der Fluglärmerkennungsparameter und eine Erkennung der Anund Abflugrouten erfolgen kann, wurde ein Flugspurplott der Deutschen Flugsicherung auf 24 Stunden, Betriebsrichtung West bzw. Betriebsrichtung Ost dargestellt.

Landungen Betriebsrichtung 08 (18.06.2014)

Starts Betriebsrichtung 26 (20.06.2014)

🛑 = Standort Messcontainer in Haimhausen am Unteren Bründlweg 3



1.5 Sonderregelung Heavy Nachtflug

Ausschlaggebend für den Anteil des Dauerschallpegel LEQ3 Nacht, möchten wir darauf hinweisen dass die Fluglärmbelastung ab 22:00 Uhr zusätzlich durch die Heavy Regelung beeinflusst wird.

<u>HEAVY-Regelung für den Flughafen München gemäß Luftfahrthandbuch Deutschland (AIP Germany)</u>

<u>Punkt 2.2.1.5.</u>: **Vierstrahlige** Luftfahrzeuge mit der Wirbelschleppenkategorie "H" müssen in der Zeit von 22:00 bis 06:00 bei Abflügen von der Startbahn 26L und Streckenführung über MUN die Abflugstrecke mit dem Kenner "W" verwenden.

Erläuterung:

Wirbelschleppenkategorie "H" Höchstabfluggewicht größer 136 Tonnen

[engl. Maximum take off weight]

MUN Drehfunkfeuer (bei Poing/östlich von München),

dient der Funknavigation für Luftfahrzeuge

18.08.2014

Seite 6

1.6 An- und Abflugrouten, Messparameter und Kalibration der Messkette

Zugeordnete, maßgebliche An- und Abflugrouten:

	Abflugrouten	Anflugrouten
Südbahn (26L) Betriebsrichtung West	ALG1S,BIBAG1S,BIBAG1W,GIVMI5S,KIRDI1W,KPT1S, MERSI3S,MERSI3N,OLASO1S,RIDAR5S,ROTAX1W, TURBU5S,TURBU5W,VAVOR1S	
Nordbahn (26R) Betriebsrichtung West	GIVMI5W,MERSI3N	
Südbahn (08R) Landungen		08R
Nordbahn (08L) Landungen		08L
TWF	Hubschrauber	08/26

Fluglärmerkennungsparameter Fluglärmmesssystem:

Startschwelle	50 dB(A	
Stoppschwelle	50 dB(A)	
Maximalpegelschwelle	55,5 dB(A)	
Mindestzeit	5 Sekunden	
Horchzeit	5 Sekunden	
Maximalzeit	90 Sekunden	

Kalibration der Messkette:

Die akustischen Messgeräte entsprechen den Anforderungen der DIN 45643 und sind auch in Kombination Mikrofon Schallpegelmessgerät von der PTB zur Eichung zugelassen. Die Kombination wurde jeweils vor Messbeginn mit einem geeichten Kalibrator kalibriert. In jeder Nacht wird zusätzlich die gesamte akustische Messeinrichtung mit einer im Mikrofon eingebauten Testeinrichtung überprüft.

Calibrationsgerät GRAS Type 41 AB	Nr.31030
Schallpegelmessgerät SA 140 Norsonic (Klasse 1)	Nr.1405138
Mikrophon Typ GRAS 41 AM (Klasse 1)	Nr. 45584
Festgestellte Mirophonempfindlichkeit	-26,1 dB(A)
Sollwert für die Probe Überprüfungen elektrisch	90,7 dB(A)

2 Zusammenfassung

Im Bezugszeitraum (39 Tage) vom 28.06.2014, 06:00 Uhr bis 06.08.2014, 06:00 Uhr wurden unter Berücksichtigung der Ausfallzeiten bei einer Betriebsrichtungsverteilung West zu Ost wie 62,5 % zu 37,5 %; (5.894) Fluglärmereignisse bzw. Einzelschallpegel erfasst und registriert. Grundlegend für die Bestimmung der Fluglärmsituation ist das Verhältnis der Bewegungsanzahl auf den tatsächlich betroffenen Flugrouten zu den registrierten Fluglärmereignissen.

Betriebsrichtungsverteilung von 2008-2014

[mittlere West-/ Ostverteilung Messung 2014 = 62,5 % zu 37,5 %] [mittlere West-/ Ostverteilung Messung 2013 = 66,3 % zu 33,7 %] [mittlere West-/ Ostverteilung Messung 2012 = Keine Messung [mittlere West-/ Ostverteilung Messung 2011 = 73 % zu 27 %] [mittlere West-/ Ostverteilung Messung 2010 = 76 % zu 24 %] [mittlere West-/ Ostverteilung Messung 2009 = 57 % zu 43 %] [mittlere West-/ Ostverteilung Messung 2008 = 49 % zu 51 %]

Anflüge/Landungen 08R

Der weitaus größte Teil (3.151) aller korrelierten Lärmereignisse wurden durch 3.745 Anflüge auf die Südbahn 08R bei Betriebsrichtung Ost ermittelt.

Anflüge/Landungen D8R (im gesamten Mess:	zeitraum)
Pegelband 55 bis 59 dB(A)	49
Pegelband 60 bis 64 dB(A)	541
Pegelband 65 bis 69 dB(A)	1819
Pegelband 70 bis 74 dB(A)	727
Pegelband 75 bis 79 dB(A)	15
Pegelband 80 bis 84 dB(A)	0

Anflüge/Landungen 08L

Desweiteren verursachten 4.220 Anflüge (Landungen) auf der Nordbahn 08L bei Betriebsrichtung Ost weitere (828) Fluglärmereignisse.

Anflüge/Landungen O8L (im gesamten Messz	eitraum)
Pegelband 55 bis 59 dB(A)	451
Pegelband 60 bis 64 dB(A)	94
Pegelband 65 bis 69 dB(A)	231
Pegelband 70 bis 74 dB(A)	51
Pegelband 75 bis 79 dB(A)	1
Pegelband 80 bis 84 dB(A)	0

Abflüge/Start 26L

Zusätzlich verursachten 5.534 Abflüge (Start) auf der Südbahn 26L bei Betriebsrichtung West weitere (1.883) Startpegel. Diese verteilen sich in den Pegelbändern wie folgt.

Abflüge/Start 26L (im gesamten Messzeitrau	m]
Pegelband 55 bis 59 dB(A)	185
Pegelband 60 bis 64 dB(A)	718
Pegelband 65 bis 69 dB(A)	839
Pegelband 70 bis 74 dB(A)	83
Pegelband 75 bis 79 dB(A)	56
Pegelband 80 bis 84 dB(A)	2

Abflüge/Start 26R

Desweiteren erwirkten 2.336 Abflüge (Start) auf der Nordbahn 26R bei Betriebsrichtung West weitere (29) Fluglärmereignisse.

Abflüge/Start 26R (im gesamten Messzeitraur	n]
Pegelband 55 bis 59 dB(A)	11
Pegelband 60 bis 64 dB(A)	17
Pegelband 65 bis 69 dB(A)	1
Pegelband 70 bis 74 dB(A)	0
Pegelband 75 bis 79 dB(A)	0
Pegelband 80 bis 84 dB(A)	0

An und Abflüge Hubschrauber TWF

Im gesamten Messzeitraum wurden auch [3] Lärmereignisse von 275 startenden bzw. landenden Hubschrauberüberflügen aufgezeichnet. Diese Pegel verteilen sich wie folgt.

An/Abflüge TWF-Hubschrauber (im gesamten	Messzeitraum)
Pegelband 55 bis 59 dB(A)	3
Pegelband 60 bis 64 dB(A)	0
Pegelband 65 bis 69 dB(A)	0
Pegelband 70 bis 74 dB(A)	0
Pegelband 75 bis 79 dB(A)	0
Pegelband 80 bis 84 dB(A)	0

2.1 Fazit

Abschließend lässt sich zusammenfassen dass zum augenblicklichen Zeitpunkt, im Mittel pro Tag, bei Betriebsrichtung West mit 77 Fluglärmereignissen und bei Betriebsrichtung Ost mit 271 Fluglärmereignissen zu rechnen ist.

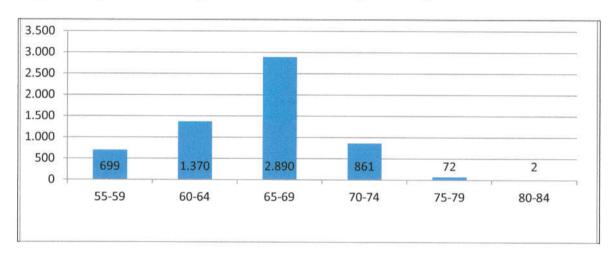
Diese teilen sich in den Pegelbändern folgendermaßen auf:

Betriebsrichtung		West		Ost				
	Im Durchschnitt an 24,38 Tagen				Im Durchschnitt an 14,62 Tagen			
Pegelband	Fluglärm- ereignisse Gesamt	ereignisse berechnet			Fluglärm- ereignisse Gesamt	Ø pro Tag berechnet	Ø pro Tag gemittelt	
55 bis 59 dB(A)	196	8,04	8		500	34,19	34	
60 bis 64 dB(A)	735	30,15	30		635	43,42	43	
65 bis 69 dB(A)	840	34,46	34		2.050	140,17	140	
70 bis 74 dB(A)	83	3,41	3		778	53,20	53	
75 bis 79 dB(A)	56	20,30	2		16	1,09	1	
80 bis 84 dB(A)	2	0,08	0		0	0	0	
Gesamt	1.912	78,44	77		3.979	272,07	271	

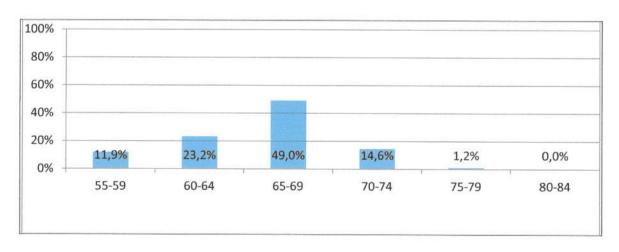
Fluglärmereignisse die durch startende oder landende Hubschrauber verursacht wurden traten sehr selten auf (3 Ereignisse im gesamten Messzeitraum).

Daraus ergeben sich im Mittel pro Tag 0,08 Fluglärmereignisse.

3 Auswertungen der Messergebnisse


3.1 Einzelschallbetrachtung

Zur Bestimmung der Fluglärmsituation am Messstandort wurden, entsprechend der DIN 45643 (Februar 2011), die registrierten max. Einzelschallpegel (*) wie folgt ausgewertet. In den folgenden Diagrammen ist die Häufigkeit aller **5.894** im Messzeitraum registrierten Fluglärmereignisse, welche unter Berücksichtigung der Ausfallzeiten an 39 Messtagen aufgezeichnet wurden, dargestellt.


3.2 Pegelhäufigkeitsverteilung LASmax

Aus den registrierten Fluglärmereignissen und den daraus resultierenden Einzelschallpegel ergibt sich eine Pegelhäufigkeitsverteilung. Hieraus wird ersichtlich, wie viele Einzelschallpegel [LASmax] in welcher Höhe und zu welchem Zeitpunkt, im Messzeitraum aufgezeichnet wurden.

Pegelhäufigkeitsverteilung aller korrelierten Fluglärmereignisse

Prozentuale Darstellung aller korrelierten Fluglärmereignisse

3.3 Håufigkeitsverteilung der Maximalpegel in Pegelklassen in dB(A), sortiert nach Stundenverteilung.

Gemeinde Haimhausen vom 28.06.2014,06:00 Uhr - 06.08.2014,06:00 Uhr

Zeitraum	55-59	60-64	65-69	70-74	75-79	80-84	Summe
00:00 - 01:00	2	1	3	1			7
01:00 - 02:00	1		3				4
02:00 - 03:00							
03:00 - 04:00							
04:00 - 05:00		1	1	4			6
05:00 - 06:00	2	3	11	39	3		58
06:00 - 07:00	12	68	134	19	1		234
07:00 - 08:00	28	111	164	54	2		359
08:00 - 09:00	44	67	99	31	2		243
09:00 - 10:00	47	59	188	64			358
10:00 - 11:00	24	43	212	54	3		336
11:00 - 12:00	70	86	147	27			330
12:00 - 13:00	43	59	97	35	4		238
13:00 - 14:00	38	53	223	86	3		403
14:00 - 15:00	28	77	240	49	1		395
15:00 - 16:00	41	124	149	25			339
16:00 - 17:00	64	55	103	59	2		283
17:00 - 18:00	47	83	214	62			406
18:00 - 19:00	45	116	231	60	2		454
19:00 - 20:00	35	104	180	42	1		392
20:00 - 21:00	25	102	258	47			432
21:00 - 22:00	30	102	137	29			298
22:00 - 23:00	21	44	69	56	43	2	235
23:00 - 00:00	22	12	27	18	5		84
Tag	651	1309	2776	743	21		5500
Nacht	48	61	114	118	51	2	394
00:00 - 00:00	699	1370	2890	861	72	2	5894

In der folgenden Tabelle ist die Häufigkeitsverteilung der registrierten Einzelschallpegel in den Pegelbändern in dB(A), aufgegliedert nach Startbahn, Flugart und Betriebsrichtung dargestellt.

Pegelband in dB(A)	55-59	60-64	65-69	70-74	75-79	80-84	Gesamt
Landungen 08R Südbahn	49	541	1.819	727	15	0	3.151
Landungen 08L Nordbahn	451	94	231	51	1	0	828
Start 26L Südbahn	185	718	839	83	56	2	1.883
Start 26R Nordbahn	11	17	1	0	0	0	29
Start/Landungen TWF Hubschrauber	3	0	0	0	0	0	3

3.4 Fluglärmerkennungsrate

Grundlegend für die Bestimmung der Fluglärmsituation sind das Verhältnis der Bewegungsanzahl (Routenbelegung) zu den registrierten Fluglärmereignissen und die daraus folgende Fluglärmerkennungsrate.

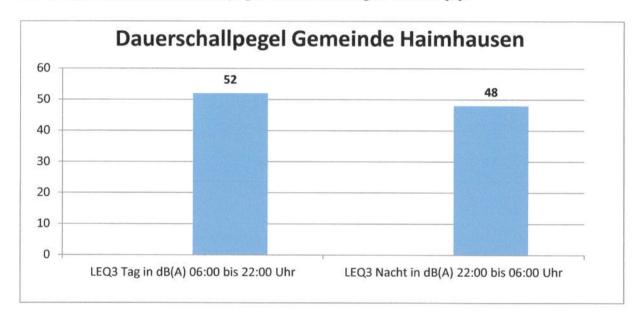
	Anzahl der gemeldeten Flugbewegungen laut Verkehrsstatistik N2 *	Anzahl aller korrelierten Fluglärmereignisse N1 > 55 dB(A)	Fluglärmerkennungsrate in % N1 / N2
Landungen 08R Südbahn	3.745	3.151	84,1
Landungen 08L Nordbahn	4.220	828	19,6
Start 26L Südbahn Siehe Abflugrouten Routenbelegung	5.534	1.883	34,0
Start 26R Nordbahn Siehe Abflugrouten Routenbelegung	2.336	29	1,2
Hubschrauber TWF Start/Landungen	275	3	1,0

^{*}Abzüglich der Ausfallzeiten (Messunterbrechungen) aufgrund von Umgebungsbedingungen z.B. Witterung, Fremdgeräusche oder technische Fehler.

Aus der Übersicht geht hervor, dass 84,1 % aller Landungen auf der Südbahn (08R) und 19,6 % aller Landungen auf der Nordbahn (08L) akustisch auffällig waren, d.h. die Fluglärmerkennungsparameter (siehe Übersicht) erfüllten und als Fluglärmereignis gekennzeichnet wurden. Starts auf der Südbahn(26L) waren zu 34,0 % und Abflüge von der Nordbahn(26R) zu 1,2 % akustisch auffällig.

Aus der Tabelle geht weiter hervor, dass $1,0\,\%$ aller Landungen und Starts durch Hubschrauber die Fluglärmerkennungsparameter am Messstandort erfüllten.

3.5 Äquivalenter Dauerschallpegel/Fluggeräusch(*)


Der akustische 24 h-Tag beginnt um 06:00 Uhr und endet um 06:00 Uhr des folgenden Kalendertages.

Der Leq3 Nacht wird kalenderbezogen ermittelt und dargestellt von 22:00 Uhr bis 06:00 Uhr des Folgetages [8 Stunden].

Der Leq3 Tag beginnt um 06:00 Uhr und endet um 22:00 Uhr (16 Stunden).

Der Fluglärm-Dauerschallpegel LEQ3 Tag über den gesamten Messzeitraum vom 28.06.2014, 06:00 Uhr – 06.08.2014, 06:00 Uhr und über alle registrierten Fluglärmereignisse (5.894) betrug 52,0 dB(A).

Der entsprechende Dauerschallpegel LEQ3 Nacht ergab 48,0 dB[A].

Bedingt durch die wechselnden Betriebsrichtungsverteilungen weichen die täglichen Dauerschallpegel voneinander ab.

Am 01.08.2014 wurde mit einer 100 % igen Betriebsrichtung Ost, der höchste Fluglärmdauerschallpegel LEQ3 Tag ermittelt.

Ausschlaggebend dafür, sind die in vergleichbar hoher Anzahl registrierten Lärmereignisse (300) und einer Verfügbarkeit Tag/Nacht 92 % / 100 %.

Datum	Dauerschallpegel LEQ3 Tag	Dauerschallpegel LEQ3 Nacht
01.08.2014	55,8 dB(A)	49,6 dB(A)

Die mit (*) gekennzeichneten Textpassagen werden im Anhang detailliert erläutert.

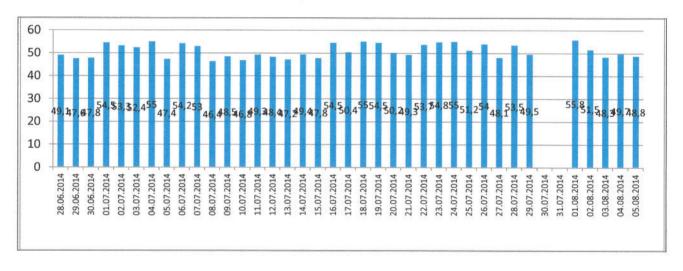
Dauerschallpegelbetrachtung LEQ

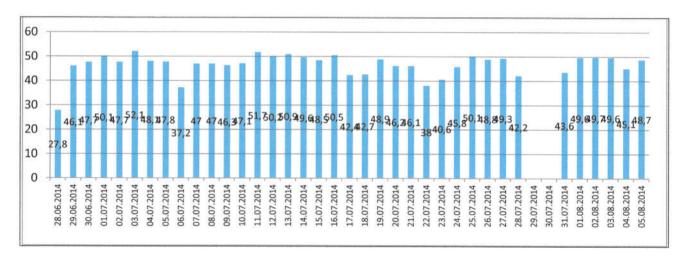
Charakteristisch für die Beurteilung der Lärmsituation am Messstandort ist die Angabe des äquivalenten Dauerschallpegels (*). Der äquivalente Dauerschallpegel LEQ3 Tag und LEQ3 Nacht nach dem novellierten Fluglärmgesetz und DIN 45643 kennzeichnet die Fluglärmbelastung für den Bezugszeitraum bzw. Messzeitraum.

In der folgenden Tabelle ist die Darstellung der Fluglärm-Dauerschallpegel LEQ3 Tag und LEQ3 Nacht dargestellt. Es werden die täglichen Dauerschallpegel in Abhängigkeit der Flugbewegungen und der jeweiligen Betriebsrichtung angezeigt.

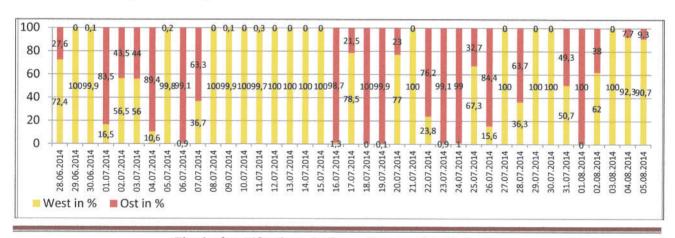
Datum	LEQ3 Tag dB(A)	LEQ3 Nacht dB(A)	Anzahl der Flugbewegungen		htungsverteilung t/Ost in %
28.06.2014	49,1	27,8	1058	72,4	27,6
29.06.2014	47,6	46,1	1041	100	0
30.06.2014	47,8	47,7	1160	99,9	0,1
01.07.2014	54,5	50,1	1153	16,5	83,5
02.07.2014	53,3	47,7	1177	56,5	43,5
03.07.2014	52,4	52,1	1160	56,0	44,0
04.07.2014	55,0	48,1	1171	10,6	89,4
05.07.2014	47,4	47,8	1027	99,8	0,2
06.07.2014	54,2	37,2	1022	0,9	99,1
07.07.2014	53,0	47,0	1166	36,7	63,3
08.07.2014	46,4	47,0	1134	100	0
09.07.2014	48,5	46,3	1152	99,9	0,1
10.07.2014	46,8	47,1	1154	100	0
11.07.2014	49,3	51,7	1161	99,7	0,3
12.07.2014	48,4	50,2	1013	100	0
13.07.2014	47,2	50,9	1020	100	0
14.07.2014	49,4	49,6	1141	100	0
15.07.2014	47,8	48,5	1115	100	0
16.07.2014	54,5	50,5	1133	1,3	98,7
17.07.2014	50,4	42,4	1125	78,5	21,5

Datum	LEQ3 Tag dB(A)	LEQ3 Nacht dB(A)	Anzahl der Flugbewegungen		htungsverteilung t/Ost in %
18.07.2014	55,0	42,7	1138	0	100
19.07.2014	54,5	48,9	1015	0,1	99,9
20.07.2014	50,2	46,2	988	77,0	23,0
21.07.2014	49,3	46,1	1114	100	0
22.07.2014	53,7	38,0	1074	23,8	76,2
23.07.2014	54,8	40,6	1095	0,9	99,1
24.07.2014	55,0	45,8	1100	1,0	99,0
25.07.2014	51,2	50,1	1104	67,3	32,7
26.07.2014	54,0	48,8	974	15,6	84,4
27.07.2014	48,1	49,3	986	100	0
28.07.2014	53,5	42,2	1064	36,3	63,7
29.07.2014	49,5	*	1045	100	0
30.07.2014	*	*	1083	100	0
31.07.2014	*	43,6	1100	50,7	49,3
01.08.2014	55,8	49,6	1097	0	100
02.08.2014	51,5	49,7	982	62	38
03.08.2014	48,3	49,6	990	100	0
04.08.2014	49,7	45,1	1053	92,3	7,7
05.08.2014	48,8	48,7	1006	90,7	9,3


^{*} Verfügbarkeit <50 %

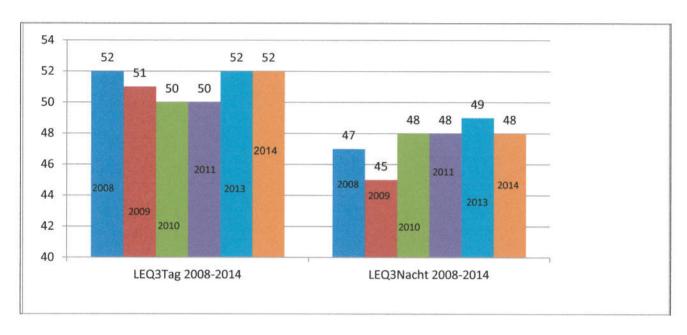

Dauerschallpegelbetrachtung LEQ Diagramm

In den folgenden Diagrammen ist der LEQ3 Tag und der LEQ3 Nacht über den gesamten Messzeitraum exemplarisch unter Berücksichtigung der Betriebsrichtungen dargestellt.


Dauerschallpegel LEQ3 Tag in dB(A)

Dauerschallpegel LEQ3 Nacht in dB(A)

Betriebsrichtungsverteilung



Flughafen München GmbH – Konzernfeld Umwelt

3.6 Dauerschallpegelbetrachtung Vergleich der Messstandorte

Vergleich der Dauerschallpegel LEQ3Tag und LEQ3Nacht der letzten 6 Fluglärmmessungen in Haimhausen.

Die Fluglärmmessungen aus den Jahren 2008 - 2011 wurden im Ortsteil Amperpettenbach durchgeführt. Für das Betriebsjahr 2012 wurde keine Fluglärmmessung beantragt.

Auf Wunsch der Gemeinde, wurde der neue Standort in Haimhausen, am Unteren Bründlweg 3 gewählt.

Die Örtlichkeiten, wurden vorher hinsichtlich der messtechnischen Voraussetzungen durch die FMG ausführlich analysiert und beurteilt.

Dieser favorisierte Messstandort, wurde erst durch den Neubau eines forstwirtschaftlichen Betriebsleiterhauses im <u>Außenbereich</u> möglich und stand vorher nicht zur Verfügung.

Bildquelle Landesamt für Vermessung und Geoinformation

4 Akustische Umgebungsbedingungen

Meteorologie und Fremdgeräusche beeinträchtigen die Fluglärmmessung auf verschiedenste Art und Weise.

In diesem Abschnitt werden die Werte und deren Auswirkungen auf die Messung aufgezeigt.

Treten während der Messzeit Störungen auf wie z.B.

\Diamond	zu heftiger Wind
\Diamond	technische Störungen
\Diamond	Kalibrierzeiten oder Ausfallzeiten durch zu viel Nachbarschaftslärm, dann wird die
	Bezugszeit um die Ausfallzeit gekürzt.

Überschreitet die Ausfallzeit 50 % der Gesamtzeit, wird der gesamte Tag als Ausfall gewertet.

4.1 Meteorologische Einflüsse

Ein direkter Einfluss auf die Messwerte kann aufgrund von Windgeschwindigkeiten oder Gewitter bewirkt werden.

Umgebungsbedingungen nach DIN 45643 (2011-02) Extreme Witterungsbedingungen

Laut DIN 45643, Teil 2, Abs. 5.6.1 sollten keine Messungen bei Windgeschwindigkeiten > 30 km/h [8,3 m/sec], heftigen Regen, Schneeschauern und Gewitter stattfinden.

Die durch diese extremen Meteorologie Einflüsse in diesen Zeiträumen erhobenen Messwerte, werden gekennzeichnet und aus der Statistik entfernt.

Umgebungsbedingungen nach DIN 45643 (2011-02) Besondere Witterungsbedingungen

Laut DIN 45643, Teil 2, Abs. 5.6.1. sollen Messungen unter besonderen Witterungseinflüssen gesondert beurteilt werden.

Besondere Witterungsbedingungen sind:

- Inversionen
- Niederschläge
- Relative Luftfeuchte < 30 % und > 80 %
- Lufttemperatur < -10 und > 25 Grad Celsius
- Windkomponente bezogen auf die Flugrichtung >15m/s
- Geschlossene Wolkendecke mit Wolkenuntergrenze < 600 m

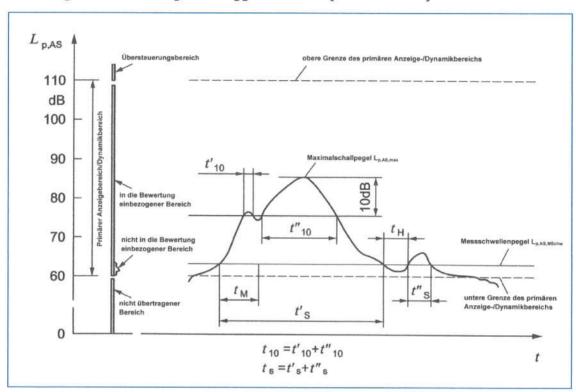
Die in diesen Zeiträumen mit besonderen Witterungsbedingungen erhobenen Messwerte werden mit in die Auswertung einbezogen, sollten aber bei weiterer Verwendung gesondert betrachtet werden

4.2 Ausfallzeiten (keine Messung)

Verfügbarkeit der mobilen Messstelle in Haimhausen

Messzeitraum vom 28.06.2014, 06:00 Uhr - 06.08.2014, 06:00 Uhr

Messbeginn	Messende	Verfügbarkeit Tag /Nacht in	
28.06.2014, 06:00 Uhr	06.08.2014, 06:00 Uhr	91	91


Ausfallzeiten, Meteorologische Einflüsse und technische Ausfallzeiten (siehe Anlage). Im gesamten Messzeitraum vom 28.06.2014, 06:00 Uhr - 06.08.2014, 06:00 Uhr wurden insgesamt an 3.813 Minuten eine Ausfallzeit gesetzt, aufgrund der oben genannten Einflüsse.

Infolge eines sehr starken Gewitters in Haimhausen wurde vom 29.07.2014, 21:00 Uhr bis zum 31.07.2014, 17:00 Uhr die Stromversorgung zum Messpunkt unterbrochen.

M

5 Erläuterungen zum Messbericht

Fluglärmerkennungsparameter nach DIN 45643 "Messung und Beurteilung von Fluggeräuschen" [Februar 2011]

Legende:

 t_{10} 10 dB-down-time

 $\begin{array}{ccc} t_{\text{H}} & & \text{Horchzeit} \\ t_{\text{M}} & & \text{Mindestzeit} \end{array}$

t_s Überschreitungszeit

Startschwelle: Pegelwert, bei dessen Überschreitung die Lärmerfassung beginnt;

Startgröße des Schwellwertes

Ls nach DIN 45643.

Stoppschwelle: Pegelwert, bei dessen Unterschreitung die Lärmerfassung endet;

Endgröße des Schwellwertes

Ls nach DIN 45643.

Maximalpegelschwelle: Pegelwert, den der Maximalpegel eines Lärmereignisses

mindestens erreichen muss, damit das Lärmereignis als

Fluglärmereignis eingestuft wird; nach DIN 45643.

Mindestzeit: Zeit, die der Schalldruckpegel mindestens oberhalb der Start und

Stopschwelle liegen muss, damit das Lärmereignis als Fluglärmereignis eingestuft wird; nach DIN 45643.

Fluglärmerkennungsparameter nach DIN 45643 (2011-02)

Horchzeit: Wartezeit nach Unterschreiten der Stoppschwelle; überschreitet

der Schalldruckpegel innerhalb dieser Zeit wieder die Startschwelle

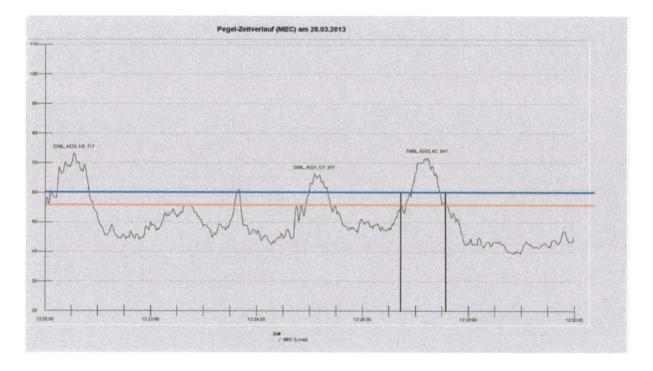
wird dasselbe Fluglärmereignis angenommen; nach DIN 45643.

Maximalzeit: Zeit, für die ein als Fluglärm erkanntes Lärmereignis maximal

registriert wird; nach Überschreitung dieser

Zeit wird das Fluglärmereignis als abgeschlossen betrachtet, zur Zentrale gemeldet, und es erfolgt eine Überprüfung auf das

nächste Fluglärmereignis.


Quelle: DIN 45643

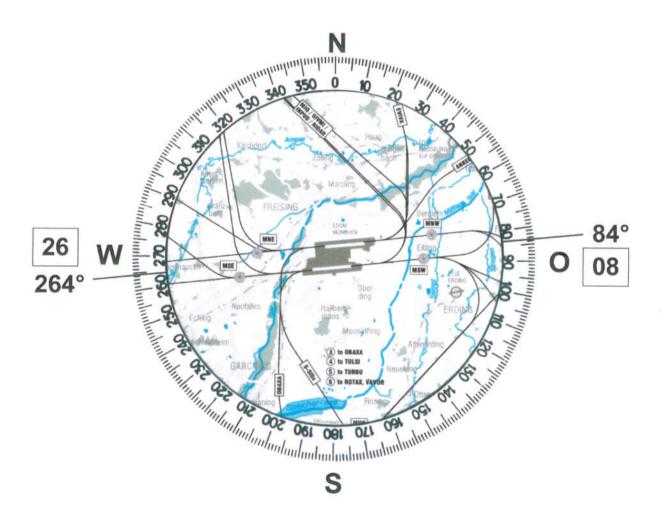
"Messung und Beurteilung von Flugzeuggeräuschen"

Fluglärmerkennungsparameter Fluglärmmesssystem:

Die Parameter werden auf Grundlage der Höhe des vorhandenen Grundgeräusches festgelegt. Das Grundgeräusch lag, im Beispiel im Bereich von LAS = 40 bis 50 dB(A). Für eine Trennung der Fluggeräusche von Fremd- oder Grundgeräusch und einer sicheren Bestimmung der t₁₀ Zeit bedarf es eines Abstandes vom Schwellwert zum Grundgeräusch von 15 dB(A).

Beispiel:

Startschwelle	55	dB(A)
Stoppschwelle	55	dB(A)
Maximalpegelschwelle	60,0	dB(A)
Mindestzeit	10	Sekunden
Horchzeit	5	Sekunden
Maximalzeit	90	Sekunden



5.1 Betriebsrichtungsverteilungen

Die Verteilung, also ob in Richtung Westen oder in Richtung Osten abgeflogen wird, hängt direkt von der Windrichtung ab. Da von beiden Start- und Landebahnen, welche parallel zur West – Ost Achse (264° bzw. 84°) ausgerichtet sind, immer gegen die vorherrschende Windrichtung gestartet und gelandet wird.

Die Betriebsrichtungsverteilung bestimmt in einem sehr hohen Maß die Anzahl und Höhe der Messwerte an den Fluglärmmessstellen, denn sie entscheidet, je nach Lage der Messstelle zum Flughafen bzw. zur Flugroutengeometrie, ob Pegel von Starts oder Landungen oder ob überhaupt Pegel aufgezeichnet werden können.

Unabhängig von der Windrichtung und Betriebsrichtungsverteilung wird bei der Nutzung des Bahnsystems darauf geachtet, dass Nord- und Südbahn zu gleichen Teilen ausgelastet sind.

5.2 Lärmklassifizierung von Flugzeugtypen

ICAO – Annex 16

ICAO ist die Weltorganisation der zivilen Luftfahrt, die Bestimmungen für die internationale Luftfahrt erlässt, in welchen auch Lärmgrenzwerte und Messverfahren für die Zulassung von neuen Flugzeugen festgelegt sind. Diese Bestimmungen wurden als Annex 16 in die Verordnungen der ICAO aufgenommen.

Kapitel 2 Flugzeuge

Diese Flugzeugtypen entsprechen den Lärmbestimmungen nach ICAO – Annex 16, Kapitel 2 und zählen zu den lauten Flugzeugen (z.B. B737-200, B727-200, DC9-40). Mit den Ausphasungsregularien (Richtlinie 92/14/EWG vom 02.03.1992 – Betriebseinschränkung von Kapitel 2 Flugzeugen, ICAO – Annex 16), gilt im EU-Raum ab dem 01.04.2002 ein Verkehrsverbot für Kapitel 2 Flugzeuge. Ausgenommen von dieser Regelung sind Flugzeuge mit einer Startmasse von kleiner 34 Tonnen oder einer Sitzanzahl von kleiner 19. Des Weiteren können durch das Bundesverkehrsministerium Ausnahmen für Luftfahrtgesellschaften aus dem ehemaligen Warschauer-Pakt Staaten gewährt werden.

Kapitel 3 Fluqzeuge

Kapitel 3 Flugzeuge sind Flugzeugtypen, die den strengen Lärmbestimmungen der ICAO – Annex 16, Kapitel 3 entsprechen. [z.B. B757, B767, alle Airbus – Typen]. Die Abflugpegel liegen zumeist fünf dB[A] unter dem der Kapitel 2 Flugzeuge.

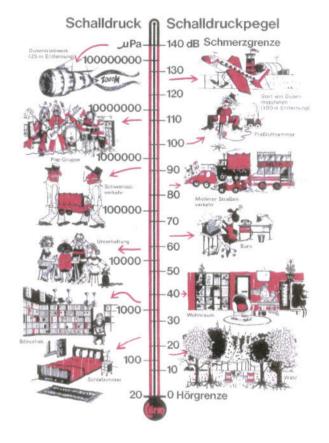
o Bonusliste

Das Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS) hat das so genannte Listenverfahren zur Gebührendifferenzierung innerhalb des Kapitels 3 erarbeitet. Nach diesem Verfahren, das auf aktuelle Lärmmessungen der Flughäfen aufgebaut ist, werden die bei Start und Landung besonders leisen Flugzeugtypen in Bonuslisten für startende und landende Flugzeuge zusammengestellt, die das BMVBS regelmäßig fortschreibt und veröffentlicht.

5.3 Fluglärmmessung und Beurteilung

Die menschliche Lärm- bzw. Schallempfindung ist von subjektiven Faktoren abhängig. Physikalisch ist Schall aber durch Dauer, Stärke und Frequenz genau bestimmt. Diese Schallwellen werden durch die Luft übertragen und am Ohr bzw. am Mikrophon als Druckschwankung (Schalldruckpegel) wahrgenommen.

Dezibel

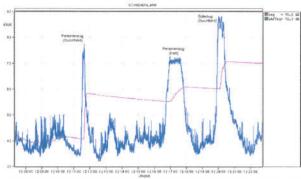

Die physikalische Messung und die Angabe des Schalldruckpegels erfolgt in Dezibel. Um zu einer Pegelaussage zu gelangen, die dem menschlichen Gehöreindruck nahe kommt, wird der Pegel durch einen A-Filter [daher dB[A]] bewertet.

Einzelschallpegel

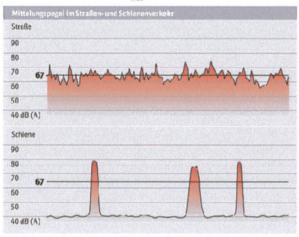
Der Einzelschallpegel LASmax
[nach DIN 45643] ist der maximale
Schalldruckpegel eines Lärmereignisses.
Dieser Messwert ermöglicht die
Beurteilung einer Flugstrecke hinsichtlich
der
Geräuschentwicklung von verschiedenen
Flugzeugtypen. Zur Veranschaulichung
der im Fluglärmteil des Berichts
genannten Einzelschallpegel dient
nebenstehende Tabelle mit
Vergleichswerten aus dem täglichen
Leben.

(Quelle : Brüel & Kjaer)

 Äquivalente Dauerschallpegel nach dem novellierten Fluglärmgesetz


Um die Messergebnisse vergleichbar zu machen, wird der Dauerschallpegel (Leq) errechnet.

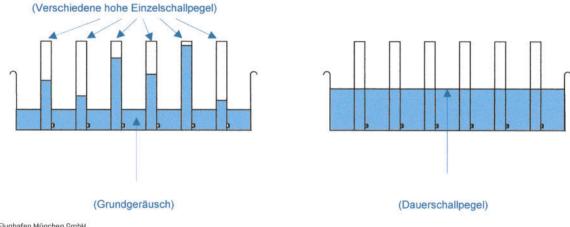
Dieser dient zur Beurteilung von Geräuschen, die innerhalb eines Zeitintervalls unterschiedliche hohe Schallpegel aufweisen oder durch Pausen unterbrochen sind. Die Pegelwerte verschiedener Zeiten werden hierbei zu einem Vergleichswert zusammengefasst, der sich zusammensetzt aus: Intensität der Einzelschallereignisse, deren Häufigkeit und deren Dauer. Die Berechnung der Dauerschallpegel und die Auswertung der Fluglärmaufzeichnungen erfolgen nach normierten Vorgaben.


Der Dauerschallpegel ist eine Art Mittelwert über den Lärm in einem bestimmten Zeitraum und wird, wie die Lautstärke von einzelnen Geräuschen, in Dezibel, kurz dB(A), angegeben. Dadurch können unregelmäßige Geräusche, wie sie beim Verkehrslärm auftreten, mit einem einzigen Zahlenwert beschrieben werden.

Beispiele zur Erläuterung:

Dieses Diagramm zeigt den stetigen Anstieg des energieäquivalenten Dauerschallpegels im Verlauf einer Messung. Beginnend mit etwa 43 dB[A] am Beginn der Messung nimmt der energieäquivalente Dauerschallpegel deutlich zu und baut sich in Zeiten geringerer Immissionswerte jeweils nur langsam wieder ab. Würde die vorliegende Messdauer von ca. 16 min auf einen längeren Zeitraum ausgedehnt, würde sich die rosa Kurve etwa im Bereich um 70 dB[A] einpegeln.

Quelle: Regierung der Oberpfalz

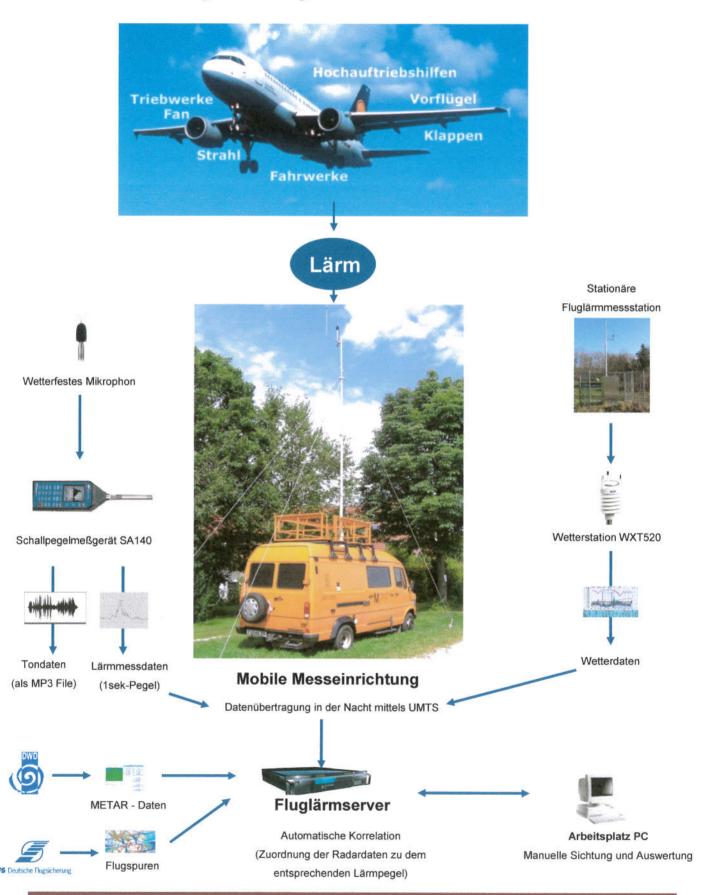


Diese Grafik verdeutlicht den Unterschied im charakteristischen zeitlichen Verlauf von Straßen- und Schienenlärm bei gleichem Mittelungspegel.

Quelle: Schallschutzbroschüre der Deutschen Bahn

Vereinfachte Erläuterung und Darstellung Dauerschallpegel:

In einem mit Wasser gefüllten Becken (Grundgeräusch) stehen mehrere abgedichtete Glaszylinder. Diese sind unterschiedlich hoch mit Flüssigkeit (verschiedene Einzelschallpegel) gefüllt und können durch ein Ventil im unteren Bereich geöffnet werden. Beim Öffnen gleicht sich der Flüssigkeitsstand zwischen den einzelnen Zylindern und dem Becken an (Dauerschallpegel).



Quelle: Flughafen München GmbH

5.4 Erfassung und Auswertung der Fluglärmereignisse

Funktionsschema der Fluglärmerfassung

5.5 Messausrüstung

Akustische Messkette

Das eingesetzte Aussenmikrophon vom Typ GRAS 41AM ist wetterfest. Eine eingebaute Heizung sichert die Mikrophonkapsel vor Kondensat, ein Windschirm und ein Vogelabweiser schützen das Mikrophon vor Wind und Vögeln.

Die akustische Messung findet mittels eines geeichten, DKD-kalibrierten Schallpegelanalysators vom Typ NORSONIC SA140 statt.

Kontinuierlich werden so von der Messstelle 2 Messwerte erfasst:

- Der 1 Sekunden Leg
- Der 1 Sekunden Taktmaximalpegel LASmax mit der Zeitbewertung S ("Slow")

Gemessen wird immer mit A-Frequenzbewertungskurve.

Zu jedem erkannten Lärmereignis wird eine Audiodatei (MP3-Format) erzeugt und archiviert. Die akustischen Messgeräte entsprechen den Anforderungen der DIN 61672 und sind, auch in der Kombination Mikrofon – Schallpegelmesser, von der PTB zur Eichung zugelassen (Typ 1 laut DIN 61672-1).

Diese Kombination wurde bei der Inbetriebnahme des Messequipments gemäß den geltenden Bestimmungen kontrolliert und mit einem geeichten Kalibrator kalibriert.

Zusätzlich wird jede Nacht, mit dem automatischen Datenabruf, eine elektrische Überprüfung des Mikrophons durchgeführt. Die Zeiten der Mikrofonüberprüfung werden nicht als Ausfall interpretiert. Hierbei wird auch die Systemzeit der Anlage mit der Serveruhrzeit synchronisiert.

Wetterdaten

Zur Erfassung der meteorologischen Daten werden zwei Systeme herangezogen:

An 3 stationären Messstellen befindet sich jeweils ein kombinierter Wettermeßwertgeber, vom Typ Vaisala WXT520, für die Erfassung der wichtigsten meteorologischen Größen.

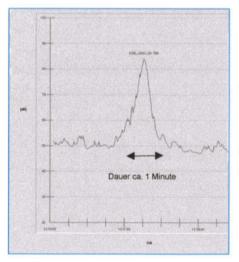
Zusätzlich werden die METAR (Wettermeldung von Flughäfen) – Daten des Deutschen Wetterdienstes (DWD) empfangen.

Dadurch können, bei extremen Witterungsbedingungen (z.B. Windgeschwindigkeiten > 10 m/s), erhobene Fluglärmereignisse automatisch vom System gekennzeichnet und aus der Statistik entfernt werden (gemäß DIN 45643).

Radardaten

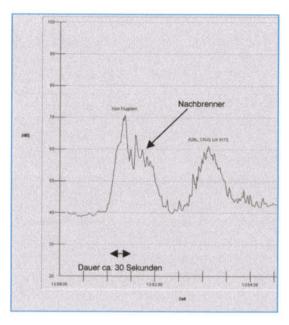
Für die Korrelation dienen seit April 2002 die Radardaten der Deutschen Flugsicherung, welche eine sehr genaue Zuordnung und eine hohe automatische Korrelationsrate ermöglichen.

5.6 Auswertung

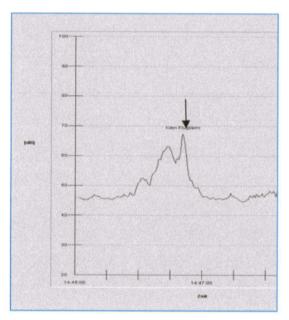

Neben den Flugzeuggeräuschen können an dem Meßequipment auch eine Vielzahl von Fremdgeräuschen auftreten (landwirtschaftliche Fahrzeuge, Militärflugzeuge, Motorfahrzeuge, Rasenmäher, Tiere, spielende Kinder u.v.m.). Um die Flugzeuggeräusche von Fremdgeräuschen trennen zu können, kommen in der sogenannten Erstauswertung Erkennungskriterien der DIN 45643 zur Anwendung. Dazu muss ein Lärmereignis eine bestimmte Maximalpegelschwelle, die Einstellung ist abhängig von der vorhandenen Grundgeräuschsituation, für eine Mindestdauer überschreiten. Tritt dies ein, so gilt das Geräusch als mögliches Fluglärmereignis, die akustischen Kenndaten werden abgelegt und es wird ein Tondokument (MP3-File) erzeugt. Die so gewonnenen Daten werden in der Nacht an den Fluglärmserver übermittelt. Hier startet die automatische Korrelation, d.h. jedes Fluglärmereignis wird mittels der GPS-genauen Radardaten dem verursachenden Flugzeug zugeordnet.

Danach werden die so entstandenen Daten nochmals manuell gesichtet. Unstimmigkeiten, Doppelzuordnungen, Fremdlärmgeräusche oder falsche Zuordnungen können in diesem Stadium bereinigt werden. Dazu können Flüge mittels der hinterlegten Flugspuren nochmals visuell auf einer Übersichtskarte dargestellt werden oder Lärmereignisse auditiv mittels der abgespeicherten Tondokumente neuerlich angehört werden.

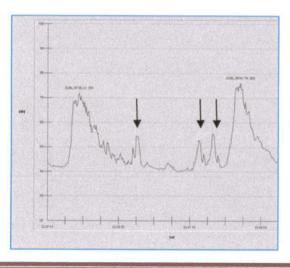
Abschließend werden die so entstanden Daten als Fluglärm auf der Datenbank abgelegt und zur Berechnung des Dauerschallpegels usw. verwendet.


Pegelbeispiele für Flugzeug- und Fremdgeräusche

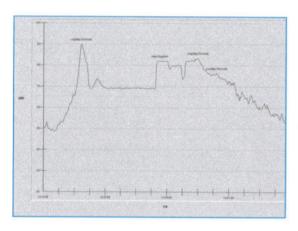
In den folgenden Beispielen sind unterschiedliche Fremdlärmgeräusche abgebildet. Da diese zum Teil auch die Fluglärmerkennungsparameter erfüllen, werden sie in der Erstauswertung als Fluglärm gekennzeichnet und bei der automatischen Korrelation einem Flugzeug zugeordnet. Bei der manuellen Sichtung werden solche Zuordnungen dann entweder aufgrund ihrer Charakteristik oder unter Zuhilfenahme der MP-3 Abhörfunktion als Fremdlärm identifiziert, gekennzeichnet und aufgelöst.



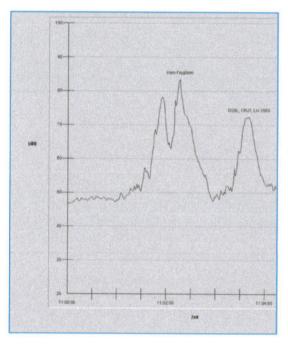
Typischer Pegelzeitverlauf für ein vorbeifliegendes Flugzeug. Der näher kommende Flieger wird kontinuierlich lauter, beim Überflug der Messstelle wird der Maximalpegel erreicht, danach entfernt sich das Luftfahrzeug wieder und das Geräusch nimmt stetig ab.


M

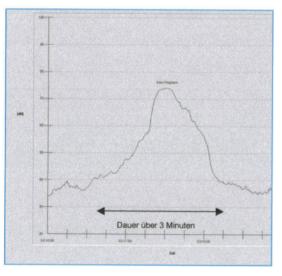
Im Vergleich dazu ein Militärjet.
Die Annäherung ist wesentlich schneller, die Maximalpegelzeit durch die Geschwindigkeit zeitlich kürzer und im weiteren Verlauf ist die durch den Nachbrenner verursachte Lärmentwicklung zu sehen.



Fremdlärmereignis verursacht durch ein vorbeifahrendes Fahrzeug.



Die durch Straßenverkehr verursachten Ereignisse können auch wie nebenan gezeigt aussehen.


M

Nebenstehende Fremdgeräusch-charakteristik wird durch landwirtschaftliche Tätigkeiten in unmittelbarer Nähe verursacht. Da diese oft von stundenlanger Dauer ist und dazwischen auftretende Flugzeuggeräusche dadurch stark verfälscht sind, werden alle Lärmereignisse in diesem Zeitraum ungültig gesetzt.

Auch vorbeifahrende landwirtschaftliche Fahrzeuge, hier ein Traktor, können die Fluglärmerkennungsparameter erfüllen und werden vom System einem Flugzeug zugeordnet.

Typischer Schienenverkehrspegel der durch einen Güterzug bewirkt wurde. Wesentliches Unterscheidungsmerkmal ist die relativ lange Dauer des Pegels.